High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress

نویسندگان

  • Natasha Thorne
  • Nasir Malik
  • Sonia Shah
  • Jean Zhao
  • Bradley Class
  • Francis Aguisanda
  • Noel Southall
  • Menghang Xia
  • John C. McKew
  • Mahendra Rao
  • Wei Zheng
چکیده

UNLABELLED Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. SIGNIFICANCE Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an optimized astrocyte differentiation protocol, it was possible to screen approximately 4,100 compounds in titration to identify 22 that are cytoprotective of astrocytes. This study is the largest-scale high-throughput screen conducted using human astrocytes, with a total of 17,536 data points collected in the primary screen. The results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction to "Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress".

Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identificatio...

متن کامل

Oxidative stress and aging--the use of superoxide dismutase/catalase mimetics to extend lifespan.

To date, more than 40 genes have been identified in the nematode Caenorhabditis elegans, which, when mutated, lead to an increase in lifespan. Of those tested, all confer an increased resistance to oxidative stress. In addition, the lifespan of C. elegans can also be extended by the administration of synthetic superoxide dismutase/catalase mimetics. These compounds also appear to confer resista...

متن کامل

Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury

Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astro...

متن کامل

Identification of Small Molecules That Protect Pancreatic β Cells against Endoplasmic Reticulum Stress-Induced Cell Death

Endoplasmic reticulum (ER) stress plays an important role in the decline in pancreatic β cell function and mass observed in type 2 diabetes. Here, we developed a novel β cell-based high-throughput screening assay to identify small molecules that protect β cells against ER stress-induced cell death. Mouse βTC6 cells were treated with the ER stressor tunicamycin to induce ER stress, and cell deat...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016